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Abstract.
Increasing complexity and integration of multicore processors have enabled unprecedented

increases in parallel processing throughput. Unfortunately, the power consumed by these
massively parallel integrated systems will likely limit the achieved system performance. Many
mechanisms have been proposed to minimize the power consumption of this underlying
microprocessor hardware (dynamic-voltage scaling; frequency throttling; power/clock gating;
I/O bandwidth scaling; sub/near-threshold operation), but these mechanisms all require
sacrifices in throughput in order to improve performance/watt. Without system-level
cooptimization of the algorithms, compiler, and hardware, the opportunity to improve
performance/power will be limited.

In this paper, we describe a holistic software/hardware codesign approach that utilizes
information feedback from all levels of the computing system, including the application,
operating system, compiler, architecture, and device level to find an energy optimal operating
point. We also describe a feedback situation that enables applications and computation systems
to adapt to different computational load conditions. Through adaptation of both the software
and hardware together, with real-time feedback of both power consumed and throughput
achieved, our proposed system will achieve optimal power consumed while minimizing the
performance impact, resulting in significantly improved energy efficiency.

1. Introduction
Increasingly high levels of system integration have provided significant opportunities for the
scientific computing community. However, while continued technology scaling has improved the
speed, energy, and density required to do the same computational work, new limitations have
emerged. Thermal heating and power consumption problems have been a primary motivation
for the migration away from increasing the sequential performance (through higher clock
frequencies and more complex logic) toward multicore systems built around parallel processing
cores (using lower frequency, simple processing elements).

Unfortunately, addressing the thermal and power density issues by using slower,
energy-efficient many-core processors has introduced new challenges, including increased
communications bandwidth demands between both on-chip computing elements and off-chip
processor nodes and a plateau in the available sequential performance, limiting many algorithms
that cannot be easily parallelized.

Highly tunable, reconfigurable processors will be able to meet the opposing goals of both
increased performance and lower power, by intelligently controlling operating characteristics
across the entire processor using multiple control knobs. For example, such a system might



expose both spatial and temporal fine-grained control of frequency and voltage scaling of
arithmetic units, on-chip networks, and memory bandwidth, as well as power and clock gating
mechanisms of on-chip memories and individual pipeline stages.

In this document we lay the groundwork for this hardware/software codesigned, hybrid-
adaptive parallel processor by identifying the primary mechanisms, controls, and sensor
feedback required for this reconfigurable system to optimize its power/throughput metrics. The
goal of our proposed research is to determine the best operating parameters for a particular
power/performance goal and then adapt the hardware system, either through auto-tuning or
real-time subsampling, to the optimal energy/performance point by controlling parallelism,
supply voltages, and clock frequencies to best meet target performance, energy, power, or other
weighting function.

The remainder of this paper is organized as follows. Section 2 describes the challenges facing
conventional systems, and reviews previous work in software/hardware feedback and energy
optimization. Sections 3 and 4 propose optimization mechanisms for intelligent parameter
tuning, thereby balancing energy and performance at the software and hardware levels,
respectively. Section 5 concludes with a general overview of our proposed work that will
enable future intelligent, energy-performance balanced, tunable systems that take advantage
of software/hardware interactions for improved energy/performance.

2. Background
While the minimization of power consumed in high-performance computing is a well-
explored topic, most previous approaches have largely focused on either hardware or software
improvements separately, without considering the interactions between the two. An approach
that combines both hardware and software optimizations to reduce power consumption presents
many clear advantages [1].

2.1. Software-Based Approaches
Energy-efficient software design can be segmented into two main categories: code and runtime
optimizations. Code techniques include hand optimization and compiler improvements, while
runtime optimizations involve the operating system or are scheduling based.

Previous work on energy-efficient software includes having the compiler optimize code in
order to minimize energy. This optimization requires explicit knowledge about the underlying
hardware, such that generalized scheduling at the compiler level for power is difficult. Attempts,
such as [2], have been made to produce energy profiles from code sequences for specific
architectures, such as the StrongARM processor. Unfortunately, these attempts have focused
largely on embedded applications where power minimization has been addressed for many years.
One such technique is sleep scheduling, where the processes performs all required computations,
then sleeps until more computation needs to be done. This technique has been shown to
work well on simple processors, like 8-bit or 16-bit microcontrollers, but may not be useful
in multithreaded, cache-based multiprocessors. However, some of these energy optimization
techniques developed for embedded systems may still have some relevance to high-performance
computing, as shown in [3].

Run-time energy optimizations span from small embedded systems [4] to large cloud-
computing scheduling algorithms [5, 6]. Operating system (OS) optimizations have been as
drastic as pushing the entire OS into hardware. In [7] a TCP/IP stack was optimized by
building thread queues into the hardware. This approach was useful because most of the CPU
time in the TCP/IP stack was spent handling threads and thread synchronization; it resulted
in a large power savings of nearly 85%.



2.2. Hardware-Based Approaches
Saving energy through hardware techniques, both circuit and architectural, is common and has
been the focus of much VLSI research in the past decade. Typically, this research is in the form
of dynamic voltage and frequency scaling [8], and power/clock gating [9]. Other techniques
include the use of accelerators for common tasks (such as AES encryption [10]) or reconfigurable
hardware (such as memory hierarchy [11]). Voltage scaling has been shown to achieve 10-20x
improvements in energy/computation but comes at a decreased throughput of 100–1000x [12].
Frequency scaling alone typically provides linear reductions in power, but also linear reductions
in throughput, thereby exhibiting constant energy-efficiency. Power gating, the disabling of
functional blocks within a CPU using a transistor switch as a header, can help minimize static
leakage power consumption, but the control overhead power as well as latency can be large,
thereby relegating this technique to only coarse-grained code segments.

Beyond the increase of computational units on a single die, both memory capacity and
bandwidth have been increasing significantly [13] in order to keep cores active, and therefore
have been a large component of power. In [1] we see that the memory (including disks)
contributes more that 60% of the total system power consumption. As a result, a significant
amount of power can be wasted if the full memory bandwidth is not required.

3. Exposing energy control to software
Energy-efficient software has been approached from a number of different directions, ranging
from compile-time optimization to dynamic scheduling of control. These different techniques
exhibit varying degrees of success based on the type of applications, and how these applications
are mapped to the underlying parallel hardware.

What is most important to note is that different applications exhibit different
demands on the computing system as a whole. Applications require different utilizations
of various components, such that control parameters of units can be adjusted individually, such
as computation throughput (supply voltage; clock frequency), memory capacity (number of
powered-on memory chips sharing a single DDR bus), memory bandwidth (number of activated
memory lanes; memory bus frequency), on-chip interconnect network throughput (on-chip
router buffering), memory access rate, or types of computations performed (integer versus
double-precision floating point).

All these hardware parameters combine to form the load on the system, resulting in the
total power consumed. Previously, we have seen in [8] that memory access rate can have a large
impact on energy consumption; by taking into account memory access rate we can get energy
savings of 50% to 65% from DVFS compared with 19% to 53% without this information.
Different memory access rates can be found in many standard scientific computations. For
example, a sparse matrix multiplied by a vector is a common operation in scientific computing,
and is typically more memory bandwidth limited than computation limited. This insight
provides the opportunity for energy optimization by increasing the memory bandwidth relative
to the compute bandwidth. Contrast this situation with another common operation, the general
matrix multiply, which is typically more computation limited than memory bandwidth limited.
This insight allows the system to be optimized for increased computational throughput while
decreasing the memory bandwidth. These two contrasting situations show that for different
application loads due to algorithm differences, computation systems can adapt and reconfigure
in order to maintain energy optimal operation.

Because the application can determine the effectiveness of the applied power-saving
techniques versus the degradation in execution time, providing energy and performance
monitoring information back to the software algorithm is vital. This approach has been
previously observed for scheduling techniques, such as [5]. In addition, quality-of-service
approaches have been attempted [14]. These approaches have exhibited moderate success in



improving energy consumption but could be significantly enhanced from access to finer-grained
controls and more accurate modeling of specific hardware component power dissipation values.

4. Circuit tunability for energy/performance-scalable operation
As CMOS technology scaling has continued to increase transistor density, new challenges have
emerged in the design of logic circuits, on-chip interconnect, off-chip interconnect, and memory
hierarchy, all of which are further complicated by increased device variability in shrinking
CMOS process technologies and reduced supply voltages. The limitations of logic were the first
to affect the traditional progression of processor development when transistor density caused
CMOS designs to hit a thermal density barrier. Energy efficiency can be improved significantly
by scaling the supply voltage (nominally around 1V) to sub/near-threshold levels (0.5–0.6 V),
at the expense of a significant exponential increase in delay. This energy/throughput scalability
exists not only for on-chip computation, but also for on-chip/off-chip interconnect [15]. While
projections from the DARPA exascale computing study [16] concluded that ultra-dynamic
voltage scaling may be infeasible due to the overhead of the increased communications demands,
recent progress in our VLSI group at Oregon State has begun to address and minimize many
of these overheads.

The most common solution to the thermal density issues has been to increase computational
parallelism and decrease supply voltages and clock frequencies. This increased parallelism, in
turn, exhibits larger demands on communications, both within and between these on-chip cores
and processor sockets. This is especially true in the high-performance computing environment,
where multicore processors require both large on-chip as well as off-chip memory bandwidth [13].
These individual, multicore systems must communicate with each other via high-speed, off-chip
interconnect between cores, chips, boards, racks, and rooms. The result is that the energy
required for communication, either on-chip or off-chip, can outweigh the energy required for the
logic to actually perform a computation [16].

Recent work in our VLSI group at Oregon State has demonstrated that for both on-chip and
off-chip interconnect circuits, new signaling techniques can provide scalable performance and
energy-efficiency across a wide dynamic range, from subthreshold and superthreshold supply
voltages. For example, we demonstrate on-chip signaling techniques operating at gigahertz
speeds at nominal 1.0V supply voltage that achieve greater than 6x energy reduction versus
standard digital signaling without sacrificing performance. By then decreasing to tens of
megahertz at the energy optimal operating point of 0.35 V energy efficiency can be improved
by an additional factor of greater than 5x.

One of the key features for these new interconnect circuit techniques is the ability
to digitally calibrate their operating characteristics for the target supply voltage
and operating frequency, in order to maximize performance while minimizing the
energy required per bit transmitted. Unfortunately, while we currently have the ability to
digitally tune the performance and energy characteristics of the circuits, no control information
is intrinsically available at the circuit level to select the proper operating point. Hence, our
next research goal is to expose these controls and operating characteristics so that control
decisions can be made intelligently to choose an optimally energy-efficient voltage and frequency
combination based on information available to the architecture, application and programmer
levels.

5. Future Work
We have shown that software can benefit from dynamic performance tuning, while the hardware
is capable of trading energy for delay. Future work will include how to best expose these energy
trade-offs from the hardware to the software. If performed correctly, such as autotuning using
a small code subblock, we hypothesize running any large algorithm close to its energy-optimal
conditions, approaching the energy per computation limits. One of the biggest challenges to



this vision is determining the energy optimal point for this complex multi-core system. This
could be attempted by the compiler in an open loop fashion, or control provided through a real
time feedback loop. Using feedback loops for energy consumption control has been previous
explored sparsely. One common method is thermal throttling of CPUs but is coarse grained
and simply a preservation method. Other attempts have been made at the application level
through the use of APIs, such as application heartbeats [14].

Many open questions remain regarding this feedback mechanism. For example, what
methods of feedback are optimal with regards to energy, as well as the associated hardware
costs? How should we control the computation hardware and its level of control granularity?
Where and how should the feedback be applied? These problems will not be solved on any
single level of the design hierarchy, but rather requires a complete, holistic, approach to device,
architecture, system, application, and operating system design and development.
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